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Algorithms and a code are described for the computation of the associated Legendre 
functions Pf(cos 8), P,“(cos f?), Qf(cos 8) and the normalized Legendre polynomial 
~~(cos B) in the ranges 0 < B & fn, y = 0, I, 2,..., -4 < v < co. The algorithms are based on 

power-series expansions and recurrence relations. They are executed in extended-range 
arithmetic, thereby admitting very extensive ranges of p and v without causing overflow or 
underflow. 

1. INTRODUCTION AND SUMMARY 

The associated Legendre equation is given by 

(1 -x2)$ -2x%+ v(v+ l)- 
i 

$J w=o. (1.1) 

Here ,B and it are parameters, usually known as the order and degree, respectively. In 
[ IO] Gautschi furnished a package for generating solutions of (1.1) in the interval 
(1, a,) for extensive real ranges of (u and v, and also purely imaginary values of v + $. 
Other algorithms, covering other ranges of the variables, will be found in 
[6, 7, 9, 11, 12,221. The present object is to provide a comprehensive package for 
generating solutions in the interval (-1, l), again for real values of P and V. This 
interval joins the singularities of (1.1) at ,Y = f 1 and is often called the cut even 
though standard solutions have long been defined that are real- and single-valued 
there. 

In physicaf applications, for example ]8, 15, 181, the commonest real values of the 
parameters are those for which ,u and 2v are integers. In the case of the degree no 
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significant complications. arise in our package by permitting v to assume any real 
value such that v > -f, and we allow for this possibility. In the case of the order, 
however, we restrict p to nonnegative integer values. 

In constructing the package we have sought robust algorithms that will cover 
extensive ranges of values of p and v, and also admit values of x very close to the 
singularities at f 1. This has been achieved by the use of fairly simple mathematical 
methods, namely, power-series expansions and recurrence relations. Direct implemen- 
tation of these methods in ordinary floating-point arithmetic would encounter 
frequent failures owing to overflow or underflow. To overcome these difficulties 
without the use of awkward mathematical devices such as the computation of ratios 
or logarithms of function values, we employ the extended-range arithmetic 
subroutines that were introduced in [ 13, 201. In this arithmetic a separate storage 
location is allocated to the exponent of each floating-point number. Subsequently, 
computed function values are converted back to ordinary floating-point form 
whenever this is possible. The main price that was paid by adopting this approach in 
[13] and [20] t o compute normalized Legendre polynomials was an increase in 
execution time by a factor of about two (on the UNIVAC 1108) when compared with 
ordinary floating-point arithmetic. A similar price is paid in the present package. The 
gain, however, is an enormous increase in the range of values of x, ,u, and v that can 
be accommodated. 

The paper is arranged as follows. In Section 2 we discuss the choice of standard 
solutions of (1.1). In Section 3 we describe recursion methods for generating these 
solutions and discuss their stability. In Section 4 we give power series for computing 
the solutions for small values of v, together with estimates of the errors incurred when 
these series are truncated. In Section 5 we give explicit formulas for cross products of 
solutions that can be used as checks. The complete package is described in Section 6, 
and the concluding section, Section 7, provides an account of tests that have been 
carried out. 

To obtain a complete code for the package, including a test program, users should 
write to the Computer Products Office, National Technical Information Service, 5285 
Port Royal Road, Springfield, Virginia 22161, and quote Accession No. 
PB 82-250853. 

2. CHOICE OF SOLUTIONS 

Definitions and properties of solutions of (1.1) are supplied in [2, Chap. 3; 16, 
Chap. 8; 17, Chap. 51, and we employ the notation adopted in these references. Two 
solutions are the Fevers functions P:(x), Q:(x), defined by 

P;(x) = r(lIp) (+‘;‘F (--v.v+ 1; l-p;++x), (2.1) 
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Q~(x)=~~~)co.~n)(~j~'* F (--I'. v + 1; 1 -B;+-+x] 

T(v+p+ 1) l-x n’2 
T(v-~+ 1> (=j F(-P.V+ 1; 1 +ii++j~ (2.2) 

where F denotes the hypergeometric function in the usual notation. When P is zero or 
an integer the right-hand side of (2.2) is to be replaced by its limiting value. 

Other solutions of (1.1) include P,‘“(kx), Q,?U(bx), P'Kp ,(+x), and Qir- ,(kx), 
and connection formulas are available to express any of these solutions in terms of 
any linearly independent pair of the others. Accordingly, we may restrict the variable 
and parameters to the ranges 

o<x< 1, ,B>o, v>-+. (2.3) 

However, the chosen standard solutions must comprise a numerically satisfactory 
pair; this means that excessive cancellation will not occur in computing any other 
solution from this pair, except of course in the immediate neighborhoods of zeros of 
the required solution. This problem was investigated in [ 17 1, and from the discussion 
on p. 186 of [ 171 it follows that if x, ,D, and v are restricted by (2.3) and ,D is an 
integer, then PL:"(x) and Q:(x) comprise a numerically satisfactory pair.’ We 
therefore adopt these solutions as standard. 

We also provide for the calculation of P:(x), and (in the case of integer v only) the 
so-called normalized Legendre polynomials .?$(x).* When p is an integer P!(x) is 
related to P;“(x) by 

P;(x) = (-)” (v-p + l)(v -/I + 2) ... (v +p) P,TYX). (2.4) 

And when ,U and v are nonnegative integers .7:(x) is defined by 

or, equivalently, 

(2.5) 

(2.6) 

’ The reason that P:(x) and Q:(x) are not adopted as the fundamental pair is that P:(x) vanishes 
identically when fi - v is positive integer; compare (2.4), below. 

’ If only the y:(x) are required, then the user may prefer the algorithm described in [ 13, 201. 
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3. RECURSION METHODS 

Recurrence formulas used to compute P;“(x) and Q:(x) are the v-wise relations 

(u + p + 1) Pv;“i(X) - (2V + l)xP,“(x) + (V -P) K!,(x) = 0, (3.1) 

(v -P + 1) Q:, I(x) - (2~ + 1) xQ:(x) + (v + cl> Q:- I(x) = 0, (3.2) 

and the ,u-wise relations 

(v-ct)(v+Er+ l)K (~+‘yX)-2‘ifx(l -x*)-“*~~~~(x)+~~(~~-‘)(x)=o, (3.3) 

In each of these equations we may replace ,D by -,u throughout; thus Q:(x) satisfies 
the same equations as P;(x), and Q;“(x) satisfies the same equations as P;“(x). 

The stability of these recurrence processes may be discussed by analogy with the 
general homogeneous linear difference equation of the second order with real and 
constant coefficients, given by 

If a, and a, denote the (real or complex) roots of the corresponding characteristic 
equation 

aa + 2ba + c = 0, (3.6) 

then linearly independent solutions of (3.5) are a{ and ai if a, + a2, or a{ and jai if 
a, = a*. There are three distinct cases: 

(i) If b2-ac>O and b$=O, then a, and a2 are real and la,j#ja,l. As j 
increases only the most rapidly growing solution, corresponding to the greater of /a, / 
and /a2 /, can be computed in a -stable manner. Similarly as j decreases only the 
solution corresponding to the lesser of /a, / and jaz / can be computed in a stable 
manner. 

(ii) If b* - UC = 0, then a, and a2 are real and equal. Again one solution 
grows more rapidly than the other, but the relative rate of growth is algebraic rather 
than geometric, consequently instabilities caused by a “wrong” choice of recurrence 
direction are relatively mild. 

(iii) If b2 - ac < 0 or if b = 0, then 1 a, I= 1 a2 1 but Q, # a2, Either solution may 
be recurred in either direction in a stable manner. 

The stability of the recurrence relations (3.lt(3.4) may be inferred by regarding 
these equations as having relatively slowly changing coefficients, an assumption that 
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monotonic 

FIG. 1. Stable and unstable recurrence regions 

is justified when ,D or v is large. In each case the “local” discriminant is positive, zero, 
or negative approximately when 

,uu$(l -x2)1’2(v+~), (3.7) 

it being assumed again that ,u and v + 4 are nonnegative. 
Figure 1 depicts the situation schematically in the plane of v + i and ,u. In the 

shaded region below the line 

p = (1 - XI)“2 (v + ;,, (3.8) 

the discriminant is negative, consequently the solutions of (3.1)-(3.4) are oscillatory 
in nature and may be generated in a stable manner in any direction. On the other 
hand in the region above the line (3.8) the solutions are monotonic and the recurrence 
direction is crucial in order to maintain stability. By considering the asymptotic 
forms of the Ferrers functions for large ,LI and large v [2, Chap. 3; 17, Chaps. 5 and 
12; 211, it may be verified that with conditions (2.3): 

(a) The stable directions for recurring P;“(x) in the monotonic region are 
increasing v and decreasing ,a. 

(b) The stable directions for recurring Q:(x) in the monotonic region are 
decreasing v and increasing p. 

These results are illustrated diagrammatically in Figs. 2-5 below. 

4. SERIES EXPANSIONS 

From (2.1) we have the expansion 

(4.1) 
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in which the coeffkients Ajf,u, v) are given by 

The region of validity of this result includes x E (-1, 1 j, ,D E [0, CD), v E (-co, 00). 
We use it to compute P;“(X) only when x E 10, l), p E [O, co), v E (-1, $1, however. 
In these circumstances it can be shown that if the series is truncated at the term for 
which j = f - 1, with J arbitrary, then an approximate bound for the relatizle error 
incurred by the truncation is 

23 -“/(??.I). (4.3) 

The corresponding expansion for Q;(x) involves natural logarithms (In) and the 
logarithmic derivative (w) of the Gamma function. Since we shall use this expansion 
only when ,D = 0 and 1, we state it explicitly in these cases: 

Q:(x) =d I-$ (E) +v/(j+ l)-Ic/(V+ I)IAj(O,v)(+-fl;)i> (4.4) 

Q;,(x)=-(1 -x2)-“* + e 
i ! 

l/2 

+ (j-v)(j+vt 1) 
W+ 1) 

+ v(v + l){v(v + 1) - v/(j+ l)} 
I 

Aj(l, v)(+ - ix),‘. 

Here A#, v) is again defined by (4.2). 
We use (4.4) and (4.5) when x f [O, I) and v E I-4, 5). In these circumstances it 

can be shown that if (4.4) is truncated at the term for which j = J - 1, with J > 2, 
then an approximate bound for the absolute error is 

12 ln(J t 1) + 4.50}/(~2~). (4.6) 

Similarly if (4.5) is truncated when j = J - 1, with J > 2, then an approximate bound 
for the absolute error is 

(J t 7.50 ln(J t 1) + 19.56}/(~.!~2~). (4.7) 

Values of all yl-functions needed in (4.4) and (4.5) are calculated from the 
asymptotic expansion 

v(t)--lnt-$- \ - “, B, 
,,q 2jf?i’ ‘+ +o3’ 
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in which Blj denotes the (2j)th Bernoulli number, and the recurrence relation 

For all positive values oft the absolute error incurred by truncating (4.8) is bounded 
by the absolute value of the first neglected term.3 

5. CASORATIANS 

In the theory of linear difference equations given, for example, in 114, Chap. XII 1. 
the Casorati determinants, or ‘LCasoratians,” play a role analogous to that of the 
Wronski determinants in the theory of linear differential equations. 

Casoratians associated with Eqs. (3.1)-(3.4) are given by 

@i-v+ l)p,,",(x)Q~(,~)+e-V-- I)P,"(x)Q~,,(,~)=cos~nf, (5.2) 

These identities are valuable as checks. They may be derived by combination of the 
Wronskians for P&(x) and Q;(x) with the recurrence relations for these functions. 

6. DESCRIPTION OF THE PACKAGE: 

Both single- and double-precision versions of the code are available. The following 
description pertains to the double-precision version. The single-precision version is 
very similar. 

Although a total of fifteen subroutines are employed, for most purposes the user 
need be concerned with two, XDSET and XDLEGF, and perhaps a third, 
XDCSRT.4 We begin this section with descriptions of these three subroutines. This is 
followed by brief descriptions of the other subroutines and an outline of the 
construction of XDLEGF. 

‘This method for computing the v-functions was preferred to methods based on approximations of 
the type described in [5], because it is of comparable speed in the present context, and more portable. 

4 Names of all subroutines in the double-precision version begin with the letters XD. Names of the 
corresponding subroutines in the single-precision version begin instead with XS. 
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(i) XDSET. As explained in the introductory section, to avoid frequent failure 
arising from overflow or underflow all computations are carried out in extended- 
range arithmetic. At the conclusion, however, the results are converted to ordinary 
double-precision floating-point form whenever this is possible. 

Extended-range arithmetic represents each nonzero real number < as an ordered 
pair (m, k) in which a is an ordinary double-precision floating-point number and k is 
a signed integer such that 

<= tis X rk, (6-l) 

r being the internal arithmetic base. The numbers ur and k are called, respectively, the 
principal part and auxiliary index of <. Full details are supplied in [ 13, 211. For 
present purposes the user need only set the parameters to initialize XDSET and to 
call XDSET prior to calling XDLEGF or XDCSRT: 

CALL XDSET(IRAD, NRADPL, DZERO, NBITS), 

where 

IRAD is the radix r, that is, the double-precision arithmetic base of the com- 
puter; 

NRADPL is the number of radix places that are carried in double precision; 
DZERO is the largest representable double-precision number, expressed in base 

10; 
NBITS is the number of bits, exclusive of the sign bit, in an integer word. 

On the UNIVAC 1100 series computers, for example, IRAD = 2, NRADPL = 60, 
DZERO = 8.9 X 103”, NBITS = 35. 

(ii) XDLEGF. This is the driver program for the main part of the package. It 
has six input scalar parameters vi, dv, p,, ,u2, 9 and ID, and two vectors of computed 
results PQA and IPQA. The call for XDLEGF is 

CALL XDLEGF (DNUl, NUDIFF, MUl, MU2, THETA, ID, PQA, IPQA), 

where DNU 1 = v, ,NUDIFF = dr,MU 1 = p, ,MU2 = ,u, ,THETA = 8. The values of 
vi, 8 and PQA must be typed double precision, and those of Av, pi, ,u2,1D and IPQA 
must be typed integer. 

Input parameters. (a) v, and vz 3 v, + Av are the extremes of the chosen values of 
the degree v. Neither v, nor v, need be an integer but Av must be a nonnegative 
integer; furthermore vi > -$, 

(b) pi and ,uu, are the extremes of the chosen values of the order ,u; each of pl, 
,uu,, and ,uz - pi must be a nonnegative integer. 

(c) At least one of Av and ,u2 --pu, is zero. 
(d) 6 is the value, in radians, of arc cos x; 8 must satisfy 0 < 6 < fry. 
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(e) ID determines which solution of the associated Legendre equation ( 1. I ) is 
to be computed. The possible values of ID are 1, 2, 3, and 4: they correspond to 
P;“(x), e;(x), Pi(x), and .Pf(x), respectively. 

(f) Ail of the conditions included in (a j(e) are checked before computation 
commences. An error message is returned in the event of failure. 

If P2 -,ur = 0, then each of PQA and IPQA has dv f 1 elements, the jth pair 
corresponding to v = v, +j - 1. Similarly if dv = 0, then each of PQA and IPQA has 
,u~ -,B, + 1 elements, the jth pair corresponding to p =p, t-j - 1. The arrays PQA 
and IPQA must be singly dimensioned in the user’s program, and of size at least 
ZJ, -y, + Av + 1. Failure to do so will result in errors that cannot be detected by 
XDLEGF. 

Computed results. Corresponding elements of the vectors PQA and IPQA represent 
the principal part u and auxiliary index k, respectively, of the extended-range form 
(6.1) of the wanted solution. 

(a) Zf an element of IPQA is zero (and this is arranged to be so whenever 
possible), then the corresponding element of PQA can be used as an ordinary double- 
precision floating-point representation of the wanted solution. 

(b) If an element of IPQA is nonzero, then the corresponding number cannot 
be represented in ordinary double-precision form because its exponent would be too 
large in absolute value. If desired, the user can convert these results to base IO 
numbers by calling the subroutine XDCON mentioned in (iv) below. The line 

CALL XDCQN (PQA(I), IPQA(I~) 

of the code replaces each principal part m in PQA and the corresponding index k in 
IPQA by a decimal floating-point number ml in PQA and an integer k, in IPQA 
such that 

(=z3xrk=r3DJIX lOhi. 

The results may then be printed as decimal numbers; compare Table V below. 
(iii) XDCSRT. This subroutine is for checking purposes. After sequences of 

values of the wanted solutions of (1.1) have been computed by XDLEGF, XDCSRT 
may be called as an optional feature. If ,B, --pt = 0, then XDCSRT computes the 
ratio of the two sides of Eq. (5.1) and the ratio of the two sides of Eq. (5.2) for 
v = v, ) v, + 1 )...I v2 - 1. Alternatively, if Av = 0, then XDCSRT computes the ratio of 
the two sides of Eq. (5.3) and the ratio of the two sides of Eq. (5.4) for 
,u=,B,,,u,+ l,,,., jf,-- 1. Since each of these ratios should be exactly 1, the computed 
ratios indicate the number of accurate significant figures in the calculated solutions. 

(iv) Other subroutines. Of the remaining twelve subroutines in the package, 
five are for implementing extended-range arithmetic. They are called XDADJ, 
XDADD, XDRED, XDCZlO, and XDCON and are the same as the subroutines 
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ADJUST, ADD, REDUCE, CNV210, and CONVRT, respectively, that were 
described in [20, Sect. 31. The others are as follows: 

XDPQNU. This serves three purposes: 
(a) Initializing three constants: the number of terms (called JO) to be used in 

the series expansions (4-l), (4,4), and (4.5); the smallest value oft (called IPSIX) to 
be used in summing the asymptotic expansion (4.8); the number of terms (called 
IPSIK) to be taken in the sum in (4.8). 

Typical values are JO = 56, for (4.1), (4.4), and (4.5); IPSIX = 13; IPSIK = 7. 
These ensure full accuracy when 60 bits are carried in the mantissae of double- 
precision floating-point numbers. 

(b) For arbitrary ~1 and arbitrary vg E (-!, -f], XDPQNU uses (4.1) to 
compute Pt;g(x) and P$ ,(a~), and then recurs forwards in v by means of (3.1). 

(c) For p = 0, 1 and arbitrary v0 E [-f, f) XDPQNU uses (4.4) and (4.5) to 
compute Qtf,(x) and QE,, 1 (x), and then recurs forwards in v by means of (3.2). The 
values of ~(j + 1) and tq(v $ 1) needed in (4.4) and (4.5) are generated from (4.8) 
and (4.9) by means of a subroutine called XDPSI. 

XDPMU. For arbitrary y and v, XDPMU calls XDPQNU (a) and (b) to compute 
P;“(x) and P;(*-‘) (x), and then recurs backwards in p by means of (3.3). 

XDQMU. For arbitrary v, XDQMU calls XDPQNU (a) and (c) to compute Q:(x) 
and Q:(x), and then recurs forwards in p by means of (3.4). 

XDQNU. For arbitrary v, XDQNU calls XDPQNU (a) and (c) to compute 
Q:-,(x), Qft(x), Q:-,(x), and Q:(x), and then recurs forwards in p by means of (3.4) 
to give Q:-,(x) and Q:(x) for an arbitrary value of p. Lastly, for this value of p 
XDQNU recurs backwards in v by means of (3.2). 

XDPMUP. For arbitrary p and v, XDPMUP computes P;(x) from P,“(x) by use 
of (2.4). 

XDPNRM. For arbitrary p and v, v now being a nonnegative integer, XDPNRM 
computes ~~(~~) from P;“(x) by means of (2.6). 

(v) Construcrion of XDLEGF. 
(a) ID= 1, ,u,=pz. XDLEGF calls XDPQNU (a) and (b) to compute 

PL:“l(cos I!?) for v = vO, vg + l,..., vz (E-V, + dv). Here v0 E (--it -41 and v, - v0 is a 
positive integer. The process is depicted schematically in Fig, 2. In this diagram, and 
the others in this section, crosses (x) indicate points at which the series expansions of 
Section 4 are used, and arrows (+) indicate directions in which the recursions of 
Section 3 are applied. 

(b) ID = 1, vr = u2, ~1, #p2. XDLEGF calls XDPMU to compute P,U(cos 0) 
forp=&,&-- l,..., ,ur; see Fig.3. 

(c) ID = 2, rttl =pz. XDLEGF calls XDQNU to compute Qfi(cos 8) for 
v = v2, v2 - I,..., v, ; see Fig. 4. 

(d) ID=% v~=v~,P~#P~. 
for p = 0, l,..., ,u, ; see Fig. 5. 

XDLEGF calls XDQMU to compute Qr;‘, (cos 0) 
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FIG. 2. Pz:*(cos 8); ID = I, &, =puz. 

FIG. 3. P, “(cos 0); ID = 1, v, = v2. 

ppp2) ------- , 
I 

~ 

I 
I 
0 ’ * MY 

v. vo+l v, a$-’ v2 

FIG. 4. Q:(cos 6); ID = 2,~~ =puz. 
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p2+---------------* 

ii 
PI,*- ------ -----------*, 

I )t ; 
ox 1 fi u 
u. a(*+ I v,(=v,~ 

FIG. 5. Q:(cos &ID = 2,v, = v2. 

(e) ID = 3. XDLEGF computes P;@(cos 0) as in (a) or (b), and then calls 
XDPMUP to compute the corresponding values of P;(cos 0). 

(f) ID = 4. XDLEGF computes P;‘(cos 0) as in (a) or (b), and then calls 
XDPNRM to compute the corresponding values of ,?‘t(cos 19). 

7. TESTS 

The package has been used to evaluate P:“(cos 0), Q;(cos e), and yE(cos 0) for a 
variety of values of the parameters in the following ranges: 

o~.i<e<900, p = O( 1) 100,000, -0.5 < v < 100,000. (7.1) 

Parts of the tables of the Centre National d’Etudes des Telecommunications [4] 
and of Belousov [3] were recomputed. The C.N.E.T. tables are of Pr(cos 0) and 
cover the ranges 

e = O(l”)1800, P = O(l)% v = -0.5(0.1)10.0, 

to a variable number of decimal places. Belousov’s tables are of L?;(cos 8) and cover 
the ranges 

0 = 0(2’.5)90’, p = 0( 1)36, v =fi(1)56, 

with a precision of six decimal places. In all cases agreement was satisfactory. 
Few tables of Q;(cos 0) exist. Tables 8.3 and 8.4 of [ 161 give Q:(x) and its 

derivative for 

v = 0, 1,2,3,9, 10, x = 0.00(0.01)0.99, 

to eight decimal places for Q”,(x) and 8,7, or 6 decimal places for dQE(x)/dx. These 
tables were recomputed. Agreement was satisfactory, except for discrepancies of a 
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few units in the last decimal place of some of the entries for Q:(Y). These 
discrepancies are reported elsewhere 119 1. 

The checking by means of tables covers only a small part of the parameter space 
(7.1); moreover, the precision of the entries in the tables is much less than is 
available from the package. More comprehensive tests were as follows. 

First, from Figs. 2-5 it is evident that most values of PF~(COS S) and Qr(cos 0) can 
be generated by XDLEGF by two largely independent recurrence schemes. Indepen- 
dently computed values were compared systematically. 

Second, values of .8E(cos 0) computed by XDLEGF were compared with 
corresponding values computed by the package NORMP described in [ 13,201. 
NORMP uses a different algorithm. 

Third, Casoratian checks were applied systematically by calling subroutine 
XDCSRT. 

As expected, the tests indicate that for large values of p or r, or both, there is an 
accumulation of rounding errors during the recursions. The growth is in direct 
proportion to the total number of recurrence steps, and the loss of decimal significant 
figures from full double-precision accuracy is approximately equal to the logarithm, 
to base 10, of the number of steps. This agrees with theoretical estimates of error 
propagation based on asymptotic representations of the associated Legendre functions 
given in [ 17, Chaps. 5 and 12 1. 

Sample running times, in seconds, for double-precision computations on a 
UNIVAC 1100/82 are given in Tables I-IV. The times are virtually independent of 
0: the actual entries in the tables are averages for 0 = O”.l, lO.0, and 89”.9. The times 
to compute Pf(cos 0) and .Pz(cos B), corresponding to ID = 3 and 4, respectively, 
are the same as, or slightly in excess of those, for P,:“(cos 0). In no case was the 
increase more than 55%. 

A sample output is supplied in Table V. The first row in the block headed 
P(-MU, NU), for example, means 

PTo9,9,~(cos 89O.9) = -0.370832029707166839 x 10p’Eh45. 

TABLE I 

Running Times (SIX): P,:“(cos 8); ID = 1, fixed ,u. 

” P 10 100 1000 10000 100000 

O(l)10 0.02 0.02 0.07 
O(l)1 10 0.03 0.04 0.07 
0(1)1010 0.17 
0(1)10010 1.53 
0(1)100000 15.05 
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TABLE II 

Running Times (set): P,:‘(cos 0); ID = 1, fixed v. 

v fi O(l)10 90(1)100 990(1)1000 9990(1)10000 

0 0.03 0.04 0.12 0.89 
10 0.04 0.04 0.12 

100 0.05 0.06 0.14 
1000 0.33 

10000 3.04 

TABLE III 

Running Times (set): Q:(cos 0); ID = 2, fixed ,u. 

O(l)10 0.07 0.09 0.27 
100(1)110 0.09 0.11 0.29 

1000(1)1010 0.47 
10000(1)10010 4.19 
99990(1)100000 41.55 

TABLE IV 

Running Times (set): Q:(cos 0); ID = 2, fixed v. 

” P O(l)10 O(1)lOO 0(1)1000 0(1)10000 

0 0.06 0.07 0.17 1.11 
10 0.06 0.07 0.17 

100 0.08 0.09 0.19 
1000 0.37 

10000 3.13 
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Similarly the first row in the block headed NORM P means that 

<~;;;;,(cos 89”.9) = -0.259768350885 116711 x 10’. 

Since all the auxiliary indices vanish in the case of NORM P, the other entries in this 
block may be used as ordinary double-precision floating-point numbers. The blocks 
of columns headed CASORATI 3 and CASORATI 4 give the ratios of the left- and 
right-hand sides of Eqs. (5.3) and (5.4), respectively, Since these ratios should be 
exactly unity, the entries indicate that approximately five decimal figures have been 
lost during the recursions. Thus the computed values of P,“(cos e), Pz(cos 8), 
Q;(cos 0), and p;(cos 19) are correct to about 13 decimal figures. This build-up of 
error agrees with that described earlier in this section. 

Finally, all programs described in this paper are believed to be portable because 
they have been written in the American National Standard Programming Language 
FORTRAN (FORTRAN 77) as specified in [ 11. 
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